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A �nite element model for the simulation of lost foam casting
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SUMMARY

In this paper, we present a numerical model to simulate the lost foam casting process. We introduce
this particular casting �rst in order to capture the di�erent physical processes in play during a casting.
We brie�y comment on the possible physical and numerical models used to envisage the numerical
simulation. Next we present a model which aims to solve ‘part of’ the complexities of the casting,
together with a simple energy budget that enables us to obtain an equation for the velocity of the metal
front advance. Once the physical model is established we develop a �nite element method to solve the
governing equations. The numerical and physical methodologies are then validated through the solution
of a two- and a three-dimensional example. Finally, we discuss brie�y some possible improvements of
the numerical model in order to capture more physical phenomena. Copyright ? 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper we present a numerical model for the simulation of a relatively new casting
process, known as lost foam casting (LFC) or evaporative pattern casting (EPC). See Ref-
erence [1] for an introduction to LFC. This process was developed during the sixties and
has experienced an exponential growth since then. To illustrate the importance gained by this
technology in the last years, let us mention that around 20% of the total aluminium casting in
the U.S. is obtained by LFC [2]. Despite its important place on the casting market, it is only
recently that numerical codes have allowed the numerical simulation of LFC. This is partly
due to the complexity of the physical processes in play.
In general castings, known as Gravity Casting, the molten metal is poured into a mold

�lled with air. The metal is allowed to �ll the mold due to gravity, as long as the pressure at
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Figure 1. LFC. (Left) Main components. (Right) Main physical processes in play.

the in�ow is su�ciently high. In LFC, the air is replaced by expandable polystyrene (EPS).
The polystyrene bead is placed in the mold, is heated and expands until it completely �lls the
mold. The resulting cluster is dipped into a permeable refractory coating (of alumina, silica
e.g.) which act as a barrier between the sand and the metal, providing a control on the escape
of gases and a better surface �nish. It is then embedded in a container �lled with compacted
sand and provided with a gating. See the sketch in Figure 1 (Left).
LFC casting operates as follows. The molten metal is poured into the gating and once it

comes into contact with the foam, the foam evaporates; this process is known as pyrolysis.
Gases can vent through the sand if the coating is su�ciently permeable. However, if the
gas is not vented su�ciently fast, casting defects can appear and perturb the metal advance.
Figure 1 (Right) shows a simpli�ed scheme of a casting using the lost foam technique. The
main parameters that control the process are the EPS pattern and the combustion characteris-
tics, the coating material, thickness, texture and permeability.
LFC presents many advantages over other methods such as green sand or die castings. From

the practical point of view, it simpli�es the casting process and enables the manufacturing of
complex shapes without the need for cores, which are useful in classical casting to produce
holes or passages. LFC provides tight-dimensional tolerances, smooth surface �nish and does
not present parting lines (the lines which separate a mold into several parts). It therefore
enable the reduction of the machining costs and the save on energy costs are higher than
30% with respect to standard castings.
The numerical approach to LFC casting requires special attention at the physical and the

numerical level. Due to the complex physical mechanisms involved, some physical simpli-
�cations are needed. For example, we decide not to solve for the combustion of the foam.
Instead, we obtain an equation for the metal front velocity, through a simple energy budget.
Neither do we consider the coating, although its e�ects can be taken into account in the
equation for the front velocity. The foam is assumed to be burnt instantaneously, and the
possible generation of viscous residues or defects is not considered [3]. A non-exhaustive
list of the main assumptions is given in Section 1. LFC usually involves characteristic ve-
locities lower than those encountered in classical casting and the metal �ow can be either
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laminar or turbulent. We have chosen a turbulence model which is able to predict the tran-
sition from the laminar to the turbulent state, namely the Spalart–Allmaras (SA) turbulence
model which consists of one additional partial di�erential equation. However, in the exam-
ples presented in Section 3, the �ows are considered fully turbulent and transition is not
envisaged.
The velocity approach to treat the front advance is not the only possible. An alternative

consists in prescribing the pressure at the front. This approach has the advantage that it
naturally takes into account the back-pressure e�ects due to the decomposition of the EPS
pattern. A possible implementation is explained in Reference [4]; this method however does
not consider the heat transfer rate between metal and foam as explicit part of the front advance
mechanism. See also Reference [5], where the authors propose in addition a model for the
back-pressure.
The numerical approximation chosen to solve the present problem is the �nite element

method. In order to capture the ever changing computational domain occupied by the metal,
three main approaches are available [6]. The �rst method consists in writing the governing
equations in a Lagrangian frame of reference, the nodes being advected by the �ow velocity
[7, 8]. The second method is based on an Eulerian formulation. The position of the front is
identi�ed by a level set function [9], which is transported by the velocity [10, 11]. The third
method is the Arbitrary–Lagrangian Eulerian (ALE) method, which uses both Lagrangian and
Eulerian approaches, and consists in adapting the mesh to each new con�guration but in
limited zones; generally this implies a node movement near the front and a remeshing if the
resulting mesh is too distorted [12, 13]. Let us mention �nally the promising meshless method
[14] used to solve free surface �ows using a Lagrangian formulation. In this work we have
chosen an ALE method, but with the originality that it is applied to a �xed mesh (FMALE).
It will be described in Section 3.3.

2. PHYSICAL MODEL

2.1. Simplifying assumption

We described in Section 1 the complexity of the physical processes involved in LFC. In order
to treat LFC numerically, some simplifying assumptions are needed. In addition, assumptions
are added for the sake of clarity of the exposition. They are:

1. The metal and foam properties are constant (at least locally).
2. There is no solidi�cation during �lling.
3. There are no sources of contamination, like viscous residues. A simple equation to take
into account the generation of contaminants will be given in Appendix B.

4. The foam is assumed to be a constant temperature obstacle so that no partial di�erential
equation for the foam is, in principle, needed.

5. All the combustion gases escape through the coating and the mold. Therefore, no gas is
trapped between the metal and the foam.

Using these simpli�cations, we are able to devise a concise physical model which is presented
below.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:203–226



206 G. HOUZEAUX AND R. CODINA

2.2. Governing equations

Let �m the domain that is �lled by the molten metal, �f be the domain occupied by the
foam and � be the total domain (metal+foam). They are shown in Figure 2. Obviously, both
domains depend on time.
Let us denote the physical properties as follows: � as the density, � as the kinematic

viscosity, cp as the speci�c heat at constant pressure, � as the thermal di�usion coe�cient
and �ij as the heat transfer coe�cient between materials i and j. We introduce the kinematic
pressure p=P=� where P is the mechanical pressure. The unknowns to be determined in the
general case are u the velocity, p the pressure and T the temperature of the molten metal.
Let us denote umf as the velocity at which the front of molten metal advances through the
foam.
The subscripts m, f and o will be used to refer to the physical properties of the molten

metal, foam and mold, respectively. Likewise, �ij will be used to denote the interface between
materials i and j, and the subscript inf will refer to values at the in�ow of the domain; see
Figure 2.
The equations describing the lost foam model in an Eulerian frame of reference are the

following:

@tu+ (ua · ∇)u − 2∇ · [�mU(u)] +∇p=0
∇ · u=0

@tT + ua · ∇T − ∇ · (�m∇T ) = 0

to be solved in �m, where U(u) is the rate of deformation tensor given by

U(u)= 1
2(∇u+∇ut)

We note that the advection velocity of the momentum and beat equations should be corrected
from u to ua as the domain �m is moving; this point will be treated in Section 3.3. Likewise,
the kinematic viscosity �m and the di�usivity �m could be modi�ed if a turbulence model is

Figure 2. Domain and boundary notation.
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used. The governing set of equations must be provided with initial and boundary conditions,
the latter ones being:

� · n=−pinfn on �inf

� · n − (n · � · n)n=0;
u · n= 0 on �mo

u= umf on �mf

T = Tinf on �inf

−�m∇T · n= �mo(T − To)=(�mcpm) on �mo

−�m∇T · n= �mf (T − Tf )=(�mcpm) on �mf

(1)

The vector n is the outward unit normal to domain �m, the tensor � is the stress tensor given
by

�= − pI+ 2�mU(u)

I being the nd-dimensional identity. Tinf is the pouring temperature and pinf is the pouring
pressure. We note that the boundary condition given by Equation (1)1 at the in�ow is

p=pinf on �inf

only if U(u) = 0, which is satis�ed, for example if the �ow is uniform. Equation (1)2 is a slip
condition that is usually used in mold �lling simulations. It can be substituted by a no-slip
condition.
In the governing set of equations, apart from the velocity, pressure and temperature, we are

left with two unknowns, namely the front advance velocity and the time-dependent domain
�m. A model for the front advance velocity is now given. Following this model, a front
advance tracking is presented to tackle the evolution of �m. Finally, to close the physical
description of the problem, we end up with the description of the turbulence model and the
associated treatment for the wall boundary conditions.

2.3. Front velocity

The velocity at which the front advances is a function of the heat absorbed by the foam,
which in turn depends on u and T so that umf = umf (u; T ). If this heat is high enough, the
foam will be molten and vaporized, and the space left free will be occupied by the metal.
The front velocity can be computed using a simple global balance of energy. Suppose that a
point at the interface of molten metal–foam advances a distance �s normal to the surface of
the interface in a time �t. The heat per unit surface released from the molten metal to the
volume initially occupied by foam will be

Qrel = �mf (Tm − Tf )�t

This heat will be invested in melting and vaporizing the foam and in increasing the temperature
of the spatial points, which originally are occupied by foam and at the end of the process are
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�lled with metal. Therefore, the heat stored can be approximated by

Qsto =
[
�f cpf

1
�t
(Tm − Tf ) +

�f
�t
(Emel + Evap)

]
�s�t

where Emel and Evap are the melting and vaporization energy, respectively, which must be
determined from experiments. Imposing that Qsto =Qrel it is found that

�f cpf
�s
�t
(Tm − Tf ) +

�s
�t
(�fEmel + �fEvap)= �mf (Tm − Tf )

For �t → 0, �s=�t → umf , from where

umf =
�mf (Tm − Tf )

�f (cpf (Tm − Tf ) + Emel + Evap)
(2)

We note that the model for the front velocity does not take into account the e�ects of pouring
temperature, coating, foam type, gravity, etc. In fact, the front velocity is independent on the
mold orientation with respect to the gravity. From experiments, the front advance should
depend on:

• The pouring temperature. The back-pressure due to the combustion of the foam increases
with this temperature. For very high temperatures, the front velocity decreases with in-
creasing pouring temperature. See for example the experiments carried out in References
[15, 16]. In the �rst reference mentioned, the �lling time of the plate solved in Section 4.1
goes from 2.1 to 3:5 s for temperature ranging from 490 to 1115◦C.

• The coating. The type of coating determines the �ow of the evacuation of the gas. For a
high permeable coating, it is observed that the front velocity increases linearly with the
pouring temperature [15]. For a given temperature, �lling times can double according to
the type of coating used.

• The foam. In Reference [17], the authors perform a multi-parameter experimental analysis
to study the combined e�ects of foam material, coating, pouring temperature, etc. They
show that the foam material is of primary importance in foam castings. In particular, they
compare expendable polystyrene (EPS) and polymethyl methacrylate (PMMA). Even
though these materials have similar densities, their chemical compositions and thermal
decomposition characteristics are di�erent so that they produce very di�erent �lling times
(up to three times higher for PMMA). For example, EPS yields more viscous residue
than PMMA; see Figure 1 (Right).

• Gravity. Although gravity g has no as strong e�ects as in empty cavity casting, in a lost
foam process it can help to counterbalance the back-pressure. In Reference [16], a �lling
time of 2:7 s is obtained for a bottom gating (counter gravity), while a �lling time of
1:75 s is obtained for a top gating.

In addition, more drastic e�ects can occur. For high temperatures and low coating
permeabilities, a large gap between the front and the burnt foam is observed. This situa-
tion is not envisaged in the context of this work.
We now present a simple way to take into account the e�ects of the back-pressure pgas.

This is a �rst step in the improvement of the model. As we do not have at hand a combustion
model, a formula for the back-pressure must be obtained from experimental results. According
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to the previous remarks, we assume that

pgas =pgas(Tinf ; foam; coating) (3)

is a known function.
The second step consists in devising an expression for the metal-to-foam heat transfer coef-

�cient by making explicit its dependence on pgas. We assume that the heat transfer coe�cient
in the absence of back-pressure and gravity e�ects is known, and it is referred to as �0mf .
It can be shown that the value of the heat transfer between two materials is proportional to
their separation distance d. If we assume next that this distance is proportional to the pressure
di�erence between the metal and the gas, we can then express the heat transfer as a function
of these pressures. In particular, we have

p = pgas → d=d0 → �mf = �0mf
p¿pgas → d¡d0 → �mf¿�0mf
p¡pgas → d¿d0 → �mf¡�0mf

From these remarks, we can derive an expression for the heat transfer coe�cient, similar to
that used in usual thermal contact models (See Reference [18]). We propose the following
expression:

�mf := �0mf

(
p

pgas

)�

(4)

This formula enables us to include in a simple way the e�ects of the set of parameters
(Tinf ; foam; coating; g) in the determination of the front advance, as the front velocity umf
depends explicitly on the heat transfer coe�cient. Indeed, we have assumed that we knew
an expression for the gas pressure in function of the pouring temperature, the foam and the
coating, given by Equation (3). The dependence on gravity appears implicitly through the
dependence on the pressure in Equation (4). We have therefore

umf =
�mf (Tinf ; foam; coating; g)(Tm − Tf )

�f [cpf (Tm − Tf ) + Emel + Evap]

This model is put to the test in Reference [19].

2.4. Front tracking

One possibility for de�ning the molten metal–foam interface (or equivalently to determine �m
at each time step) is the level set technique. This is not a general conservation law, but rather
a mathematical model to describe the evolution of this interface (see Reference [10] for an
application of this method to classical mould �llings). It consists in de�ning a scalar function,
called the level set function (LSF), say  , over the computational domain � in such a manner
that its value at a certain point indicates the presence or absence of metal. This function may
be considered a �ctitious �uid property. For instance, we may assign the value 1 to regions
where the liquid metal has already entered and the value 0 to foam-�lled regions. The position
of the metal front will be de�ned by the isovalue contour  =  c where  c ∈ [0; 1] is a critical
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value de�ned a priori. We usually take  c=0:5. This value is immaterial if  is a true step
function, but is needed in the �nite element discretization. The level set technique is usually
used to follow the free surfaces of �uids, i.e. surfaces advected by the �uid velocity itself, like
many other methods to track free surfaces such as the particle-in-cell technique or di�erent
variants of marker methods [20]. In the present case we have a somewhat di�erent situation.
The LSF is advected due to temperature gradients and is therefore not explicitly advected by
the �uid motion (Equation (2)). The �uid motion is induced by the front advance and we
can de�ne formally:

�m = {x∈� |  (x)¿ c}
In order to follow the motion of the front, a level set equation is solved in the following
way:

@ 
@t
+ u · ∇ =0 (5)

where u is the velocity of the metal. Remember that at the metal–foam interface, the velocity
is imposed as a Dirichlet boundary condition given by Equation (1)3. The algorithm that
allows us to correctly advect the LSF will be presented in Section 3.2, as its implementation
is completely dependent on the numerical strategy presented in Section 3, namely the �nite
element method. Equation (5) must be provided with initial and boundary conditions. For
example:

 =1 on �inf

In the latter section we derived an equation for the front velocity module. We now assume
that the front is moving along the normal to the front, which is precisely the gradient of the
level set function:

umf = − ∇ 
|∇ | umf (6)

Another possibility would consist in assuming that the velocity is parallel to the temperature
gradient such that

umf = − ∇T
|∇T | umf

This option is not envisaged in this work.

2.5. Turbulence model

Turbulence is treated using the ensemble-averaging approach together with the Boussinesq
approximation for the Reynolds stress tensor, and a similar apparent di�usion concept for the
heat equation. The resulting system is referred to as the Reynolds-averaged Navier–Stokes
(RANS) equations and reads:

@tu+ (ua · ∇)u − 2∇ · [(�m + �t)U(u)] +∇p=0
∇ · u=0

@tT + ua · ∇T − ∇ · [(�m + �t)∇T ] = 0
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where �t is the eddy viscosity (also referred to as apparent or turbulent viscosity), and �t is
the turbulent di�usivity.
The turbulence model chosen to compute the eddy viscosity is the Spalart–Allmaras tur-

bulence model. This model was devised ‘using empiricism and arguments of dimensional
analysis, Galilean invariance, and selective dependence on molecular viscosity’ [21]. It con-
sists of a transport equation for the eddy viscosity �t . For any details on the equation, see the
original publication of the authors [21]. The transport equation for �t is

@t�t + u · ∇�t − cb1S�t − 1
�
[∇ · (�t∇�t) + cb2 (∇�t)2] + cw1fw

�2t
d2
= 0

where cb1 , cb2 , � and cw1 are constants, S is the norm of the vorticity, fw is a function
depending on S, �t and the distance to the wall d. This equation is the high Reynolds number
version of the model. Additional corrections enable the computation of low Reynolds number
and transition e�ects, which not shown here for the sake of brevity.
The turbulent di�usivity is calculated through the introduction of the turbulent Prandtl

number Prt de�ned as:

�t =
�t
Prt

(7)

In order to close the system of governing equations, an expression for Prt is needed. In
general, we have that:

For liquid metals: Pr � 1; Prt¿1; Prt =Prt(Pr; Re; y)

where Re is the Reynolds number and y is the distance to the wall [22, 23]. The turbulent
Prandtl number increases with decreasing Prandtl and Reynolds numbers. In Reference [24]
the authors mention that both theory and experiment suggest that Prt → Prt∞, a value
common to all Pr, as Re → ∞. They derive an expression for the turbulent Prandtl number
in pipe and channel �ows with Prt∞ = 0:85. This is the value chosen in the present work.
The system of governing equations is now closed.

2.6. Wall function approach

The RANS and turbulence equations are solved using the wall function approach [25] on the
wall-type boundaries of the computational domain, i.e. �mo in the present case. In order to
avoid solving for the large gradients present in the boundary layer, the wall function approach
implemented here consists in assuming that the computational wall is located at a distance
y su�ciently far from the real wall where the no-slip condition for the velocity holds. Then
the wall friction U∗ is estimated by applying the law of the wall at y, i.e. by solving the
non-linear Reichardt’s law given by (see for example Reference [26]):

U+ :=
U
U∗
=
1
�
ln(1 + �y+) + 7:8

[
1− exp

(
−y+

11

)
− y+

11
exp(−0:33y+)

]
(8)

where U is the velocity at the computational wall, �=0:41 is the Von Karman constant and
where y+ is the dimensionless distance to the wall of the boundary point de�ned as

y+ :=
yU∗
�m
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The wall boundary condition for the momentum equations consists of a mixed
Dirichlet/Neumann condition where the normal component of the velocity is zero and where
the tangential component of the traction t is given by

t= − U 2
∗
u
|u|

Equation (1)2 is therefore substituted by:

u · n = 0; � · n − (n · � · n)n= t
The wall condition for the eddy viscosity is computed using the classical mixing length
hypothesis together with the Van–Driest damping function, i.e. we impose that

�t = l2mix

∣∣∣∣dUdy
∣∣∣∣

lmix = �y+
[
1− exp

(
−y+

26

)] (9)

where dU=dy is the normal derivative of the tangential velocity. Equation (9) corresponds to
the inner-layer equation of the Baldwin–Lomax model, approximating the magnitude of the
vorticity by dU=dy. It can be re-expressed in terms of the dimensionless quantities as:

�+t = �2(y+)2
[
1− exp

(
−y+

26

)]2 dU+

dy+
; �+t =

�t
�m

where dU+=dy+ is obtained by simply deriving Reichardt’s law (8), i.e.

dU+

dy+
=

1
1 + �y+

+
7:8
11

[
exp

(−y+

11

)
+ (0:33y+ − 1) exp(−0:33y+)

]

In the present work, we leave the wall boundary condition for the temperature unchanged
although the heat transfer coe�cient may be di�erent in the turbulent case.

3. NUMERICAL MODEL

In the previous section we presented the physical modeling of the lost foam process. However,
some purely numerical ingredients are necessary to solve the governing equations e�ciently.
We �rst introduce the �nite element method which is used to solve the partial di�erential
equations. Next we introduce the treatment of the front advance. Then we explain how this
method a�ects the governing equations; in particular we will see that it can be viewed as an
arbitrary Lagrangian (ALE) method applied to �xed meshes. Then we explain the complete
numerical algorithm.

3.1. Finite element method and time discretization

The RANS, heat and SA equations are solved using a Finite Element model based on a
stabilized Galerkin method. It is well-known that the Galerkin formulation can lack stability
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for two major reasons. The �rst reason is related to the compatibility of the �nite element
spaces for the velocity and the pressure which have to satisfy the so-called Ladyzhenskaya–
Brezzi–Babu�ska (LBB) condition. This condition is necessary to obtain a stability estimate for
the pressure; without requiring this condition, the pressure would be out of control. The second
reason is attributed to the relative importance of the viscous and convective e�ects in the
momentum equation. The stabilized formulation is based on the algebraic variational subgrid
scale (SGS) model �rst introduced in Reference [27]. The variational SGS model �rst argues
that the inability of the mesh to resolve all the �ow scales is responsible for the numerical
instabilities. Therefore, the model calculates in some approximate way the unresolved scales
of the �ow, i.e. the scales smaller than the mesh size. The method is extensively described in
Reference [28]. Finally, the time discretization is carried out using the generalized trapezoidal
rule, i.e. a �nite di�erence scheme. To do so, we consider a partition 0= t0¡t1¡ · · ·¡tN =T
of the time interval [0; T ] of interest. The time step is denoted as �t= tn − tn−1.
In this work we consider two types of elements using both equal-order interpolation for the

velocity and the pressure. The Q1/Q1 element is continuous and bilinear (trilinear in three
dimensions) in both velocity and pressure. We will also work with the P1/P1 element, con-
tinuous and linear in velocity and pressure. These elements do not satisfy the LBB condition
and therefore require the use of stabilization.
A similar numerical model is used to solve the equation for the temperature T , the turbulent

viscosity �t , and the LSF  , which are interpolated like u and p. They are integrated in time
using the generalized trapezoidal rule and the algebraic SGS method is employed to stabilize
the possible dominance of convective and reactive terms. See Reference [28] for further
details.

3.2. Front advance treatment

In Section 2.4, we mentioned the possibility of identifying the presence and absence of metal
by solving a partial di�erential equation for the LSF. In this work, we propose to solve the
partial di�erential equations in the whole domain �, in order to advect the LSF correctly
across the interface. We therefore have to de�ne in a clear way the metal domain, the domain
of interest. As presented here, the proposed method is exclusive to the �nite element method
(although it can surely be extended to other methods).

3.2.1. Front de�nition. Let us take as reference the solution obtained at a time tn. We assume
that the LSF  n is known. The idea is to divide the �nite element mesh of � into three
zones, which are three sets of elements of the �nite element discretization: the metal set with
elements whose nodes satisfy  ¿ c; the foam set with elements whose nodes satisfy  6 c;
and �nally, the front set which includes elements that have both metal and foam nodes, i.e.
the remaining elements. In the same way, we de�ne the front nodes as the nodes belonging
to front elements, which in addition can be of metal or foam.
Metal nodes are nodes of metal elements; likewise, we de�ne foam nodes similarly. These

metal and foam nodes can be of front type also. See Figure 3.

3.2.2. Front advection. The front velocity given by Equations (2) and (6) is imposed as a
Dirichlet boundary condition on all the front nodes. This enables to advect the LSF properly
across the metal–foam interface, both in the metal and foam domain. Here we must list some
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Figure 3. Scheme of the front treatment.

useful numerical ingredients:

• To compute the gradient of the LSF involved in Equation (6), we use a least-square
smoothing.

• To obtain a smooth incompressible �ow in the foam region, we solve a stationary Stokes
problem in the foam set (by setting �t =0 and removing the time derivative and con-
vection term). In addition, all the boundary nodes of the foam set are left free so that
the arti�cial �uid in the foam can escape the domain and be incompressible. That is, we
impose

� · n=0 0 �fo (10)

This step can be understood as an extension of the velocity �eld in the metal region to
foam. It is necessary for the numerical problem (not for the continuous one) since at
each time step the front will enter several foam nodes where the velocity needs to be
de�ned.

• To insulate the metal set completely from the foam set, the element matrices of the front
set are not assembled in the global sti�ness matrix of the RANS, SA and heat equations.
Note that for numerical reasons, it is preferable to multiply the front element matrices by
a small value (say 10−6) rather than removing them from the assembly. What we have
now are two independent domains, one �lled with metal, the other �lled with foam, and
a front of one element width on which the velocity is prescribed to umf .

• The velocity vectors of the front nodes located on the mold boundary are projected
on the boundary so that the metal does not escape the metal domain as sketched in
Figure 3.

3.2.3. Further corrections. As far as the heat equation is concerned, by removing the front
element contribution to the sti�ness matrix we are implicitly imposing an adiabatic condition
for the metal domain, that is �mf =0 in Equation (1)6. However, if �mf �=0, the adiabatic
condition can be converted into the desired boundary condition by reconstructing the boundary.
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This is explained in Appendix A at the end of the paper. In the independent foam domain,
the temperature can be set constant.

3.3. ALE method with �xed mesh

When using the level set technique in general casting, involving a metal–air mixture, the
Navier–Stokes equations are solved in the entire mold with the physical properties being
those of the metal or those of the air according to the value of  . The frame of reference
is therefore Eulerian. In the present case, the LSF is used to de�ne the metal computational
domain, which changes at all times. However, according to the numerical algorithm used to
capture the front advance, we want to use the same mesh all along the time integration. So
how do we interpret the method described in last section? Figure 4 illustrates the method
we propose together with the classical ALE method on a simple one-dimensional example,
on the x-axis. The �lled bullets represent metal nodes while the empty ones represent foam
nodes. Filled bullets with an outer circle indicate metal front nodes. The top line represents the
starting solution at time tn, the metal front node being node 2. If we use an ALE method, as
shown in the middle line, nodes 2, 3 and 4 are moved with velocity um= um(x). In particular,
node 2 moves with a velocity um= umf . We recall that when the mesh is moving with velocity
um, the advection velocity ua of the transport equations should be substituted by u−um. Now
let us remesh the new con�guration so that it coincides with the original mesh. The solution
is shown on the third line. We observe that going back to the original mesh, the nodes 2′′; 3′′

and 4′′, with co-ordinates x2′′ − um�t, x3′′ − um�t, and x4′′ − um�t, respectively, would fall in
the element with nodes 1 and 2. If um is known, we can therefore �nd the values of u, T
and �t at time n of the newly metalized nodes. We take for these nodes um= un−1. Once we
know the position of nodes 1′′, 2′′, 3′′ and 4′′ at time tn, we can obtain the value of the
unknowns by any interpolation procedure at hand. These values are those needed in the time
discrete form of the di�erential equations.

Figure 4. ALE and proposed methods to track front advance.
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3.4. Numerical algorithm

We now sum up all the concepts introduced in the previous section. The partial di�erential
equations to solve in � are:

@tu+ [(u − um) · ∇]u − 2∇ · [(�+ �t)�(u)] +∇p=0

∇ · u=0

@t�t + (u − um) · ∇�t − cb1S�t − 1
�
[∇ · (�t∇�t) + cb2 (∇�t)2] + cw1fw

�t2

d2
= 0

@tT + (u − um) · ∇T − ∇ · [(�+ �t)∇T ] = 0

@ 
@t
+ u · ∇ =0

(11)

The turbulent di�usivity coe�cient �t is given by Equation (7). The physical properties �
and �, the mesh velocity um, and the boundary conditions change with time, according to
the position of the front (identi�ed by the value of  ). Their calculations are presented in
Algorithm 1.

Algorithm 1. Numerical algorithm
Impose initial conditions,  =1 on the in�ow and  =0 elsewhere
Set n=0
for time steps do
Set n = n+ 1
Identify the element sets, see Figure 3
Impose the front velocity (2), (6) as a Dirichlet condition on the front nodes
Leave free the boundary foam nodes (10)
Impose the temperature on foam nodes
Construct the front boundary �mf
Set �= �i, �=�i where i=m in metal elements and i=f in foam elements
Let um= un for newly metalized nodes, and um= 0 elsewhere
Interpolate un−1, �n−1t and Tn−1 for newly metalized
nodes of co-ordinates x − um�t; see Figure 4
while stopping criterion not reached do
Update wall boundary condition for RANS on �mo using wall function approach
Solve RANS equations (11)1;2 in metal and stationary Stokes equations in foam,
multiplying the contribution of the front elements to the sti�ness matrix by 10−6

Update wall boundary condition for SA on �mo using wall function approach
Solve SA equation (11)3, multiplying the contribution of the front elements by 10−6

Update boundary condition for the temperature on �mf and �mo
Solve Heat equation (11)4, multiplying the contribution of the front elements by 10−6

Solve level-set equation (11)5
end while

end for
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4. NUMERICAL EXAMPLES

4.1. Horizontal plate

The �rst example we solve is the aluminium casting of a two-dimensional plate [3, 16].
The geometry is shown in Figure 5. We consider that the properties of the material do not
depend on the temperature. They are shown in Table I. For the sake of simplicity, we set
�mo =0 in Equation (1)5 and �mf =0 in Equation (1)6. Note that the Prandtl number of this
liquid metal is very small; Pr=0:0045. This means that the di�usion of the temperature
is much more e�cient than the di�usion of momentum, and therefore the boundary layer

Figure 5. Horizontal plate. Geometry, boundary conditions and experimental front advance [16].

Table I. Horizontal plate. Physical properties and variables in play.

Symbol Property Value

Aluminum
�mf Metal to foam heat transfer coe�cient 6:00× 103 (kg=(s3 K))
�m Density 2:70× 103 (kg=m3)
�m Viscosity 3:70× 10−7 (m2=s)
�m Conductivity 8:32× 10−5 (m2=s)
Cpm Speci�c heat 8:37× 102 (J=(kg K))
Tinf In�ow temperature 1:02× 103 (K)

Foam
�f Density 2:00× 101 (kg=m3)
cpf Speci�c heat 4:00× 103 (J=(kg K))
Emel Speci�c melting heat 8:00× 102 (J/kg)
Evap Speci�c vaporization heat 4:00× 102 (J/kg)
Tf Temperature 2:93× 102 (K)
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Figure 6. Horizontal plate. (Left) Coarse mesh. (Right) Fine mesh.

Figure 7. Horizontal plate. (Left) Convergence. (Right) Velocity at in�ow.

of the temperature is much larger than that of the velocity. Through the solution of this
example we want to test the numerical strategy. We consider the following numerical/physical
combinations: laminar and turbulent �ows; a �ne mesh of 3660 Q1/Q1 elements and a very
coarse mesh of 264 elements, see Figure 6; a large time step �t=0:1 s and a small one
�t=0:05s. In order to take into account the di�usive character of turbulent �ows, the laminar
simulations are carried out using the RANS equations with a constant eddy viscosity such
that �t = 100�. In the same way, the thermal di�usion is added a constant turbulent di�usion
�t = �t=Prt =4:35× 10−5 m2=s. Figure 7 (Left) shows the convergence history of the iterative
scheme for the turbulent solution on the �ne mesh with �t=0:1s. The velocity residual of the
equation falls 4 orders of magnitude in 10 iterations, while the eddy-viscosity residual falls
less than 2 orders of magnitude. Figure 7 (Right) compares the evolution of the velocity at
the in�ow for four di�erent simulations. We note that as the interface evolves, the incoming
jet has higher and higher velocities; in fact, the velocity at the front is almost constant, with
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Figure 8. Horizontal plate. Front advance at time 0.6, 1.0 and 1:8 s.

a value of

umf ≈ �mf
�tcpf

= 0:075 m=s

and as the length of the front increases, the mass �ow rate must increase. We observe that
the laminar and turbulent solutions obtained on the �ne mesh with the same time step give
very similar solutions.
Figures 8 and 9 compare the evolutions of the metal front and velocity vectors for the three

times shown in Figure 5. Note that for these four simulations the time is set to zero when the
front passes the plate entrance. We can observe strong recirculation zones generated once the
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Figure 9. Horizontal plate. Velocity vectors at time 0.6, 1.0 and 1:8 s.

metal enters the plate, and transported by the metal jet from left to right. This recirculation is
even captured by the (very) coarse mesh, but located at a di�erent position. We also observe
that the distortioned pro�le of the front obtained in the experiments cannot be well reproduced,
although the location of the front is good. This discrepancy could be attributed to many factors,
like for example the two-dimensional approximation of the real three-dimensional �ow, the
fact that the velocity is not normal to the front as we have assumed, the recirculation behind
the metal front which may draw some viscous residues along the interface and towards the
top and bottom walls and these e�ects slow down the progression of the metal, etc. The
generation of this vortex is shown in more detail is Figure 10. This �gure also shows the
temperature contours.
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Figure 10. Horizontal plate. Metal entering the plate. (Top) Velocity vectors.
(Bot.) Temperature contours.

4.2. Tee shape

We simulate a three-dimensional tee-shaped casting, whose geometry is shown in Figure 11.
We take the same physical properties as those of the previous example, and consider laminar
�ow (augmenting the viscosity and di�usion in the same way). The inner diameter of the
vertical cylinder is 0:08 m while the inner diameter of the others is 0:10 m. The geometry
is symmetrical with respect to the ingate and therefore the �lling should also be symmetric.
However, we want to observe the e�ects of variable foam density. In fact, the foam density is
likely to be non-uniform, especially near the injection points. The front velocity model given
by Equation (2) is expected to take into account these e�ects, as the foam density appears in
the denominator.
Figure (12) (Top) (Left) shows the di�erent zones of foam density considered in this

example, while Figure (12) (Top) (Right) shows the interpolated density contours on the
mesh used for this simulation (25344 P1/P1 elements). On the bottom of this �gure, we can
observe the decrease of the metal advance velocity when it encounters zones of high density.
Finally, Figure (13) shows the evolution of the velocity vectors.

5. CONCLUSIONS

We have presented a numerical model to solve lost foam casting problems. This numerical
model is based on a �nite element method using an ALE formulation with a �xed mesh. It
was found that the evolution of the metal domain could be captured well by solving a partial
di�erential equation for a level set function, advected on both sides of the front. The �rst
numerical example showed that the dynamic of the metal was almost exclusively driven by the
front advance: the laminar simulation with augmented viscosity and the turbulent simulations
gave very similar results. In the second numerical example, we showed that the model for the
front velocity could take into account variable foam density. Finally, we give in the appendix
some indications on how the physical model could be modi�ed to take into account casting
defects.
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Figure 11. Tee-shape geometry.

APPENDIX A: METAL BOUNDARY RECONSTRUCTION

In Section 3.2.3 we mentioned the possibility of reconstructing at each time step the metal-
front boundary. This is useful if a Neumann or Robin condition is to be imposed on the
temperature equation.
The algorithm to construct this boundary is given by Algorithm 2.

Algorithm 2. Metal-front boundary reconstruction algorithm
for Front elements ielem do
for Front edges/faces iedge of ielem do
If all nodes of iedge are of metal, add it to the metal-front boundary

end for
end for
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Figure 12. Tee-shape. (Top) (Left) Density zones. (Top) (Right) Mesh and density contours. (Bot.)
Metal advance slowed down by high foam density (indicated by the circles).

APPENDIX B: TAKING DEFECTS INTO ACCOUNT

The prediction of defects can be achieved by solving a scalar transport equation for the
concentration of residue 	 of the type

@t	+ ua · ∇	= S	 in �m
	=0 on �inf

where S	 is a source term emanating from the front. As noted in Reference [3], it can be
taken to be proportional to the mass of degraded foam.
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Figure 13. Tee-shape. Velocity vectors along time.
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